Tech

AI versus the brain and the race for general intelligence

AI versus the brain and the race for general intelligence



But most of these predictions are coming from people working in companies with a commercial interest in AI. It was notable that none of the researchers we talked to for this article were willing to offer a definition of AGI. They were, however, willing to point out how current systems fall short.

“I think that AGI would be something that is going to be more robust, more stable—not necessarily smarter in general but more coherent in its abilities,” said Ariel Goldstein, a researcher at Hebrew University of Jerusalem. “You’d expect a system that can do X and Y to also be able to do Z and T. Somehow, these systems seem to be more fragmented in a way. To be surprisingly good at one thing and then surprisingly bad at another thing that seems related.”

“I think that’s a big distinction, this idea of generalizability,” echoed neuroscientist Christa Baker of NC State University. “You can learn how to analyze logic in one sphere, but if you come to a new circumstance, it’s not like now you’re an idiot.”

Mariano Schain, a Google engineer who has collaborated with Goldstein, focused on the abilities that underlie this generalizability. He mentioned both long-term and task-specific memory and the ability to deploy skills developed in one task in different contexts. These are limited-to-nonexistent in existing AI systems.

Beyond those specific limits, Baker noted that “there’s long been this very human-centric idea of intelligence that only humans are intelligent.” That’s fallen away within the scientific community as we’ve studied more about animal behavior. But there’s still a bias to privilege human-like behaviors, such as the human-sounding responses generated by large language models

The fruit flies that Baker studies can integrate multiple types of sensory information, control four sets of limbs, navigate complex environments, satisfy their own energy needs, produce new generations of brains, and more. And they do that all with brains that contain under 150,000 neurons, far fewer than current large language models.

Article by:Source: John Timmer

Click to comment

Leave a Reply

Your email address will not be published. Required fields are marked *

Most Popular

To Top
Follow Us